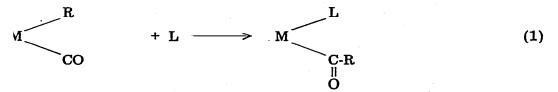
Iournal of Organometallic Chemistry, 99 (1975) C27–C28 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

THE PHOTOCHEMICAL SYNTHESIS OF $(\pi - C_5H_5)Fe(COCH_3)(CO)E(C_6H_5)_3$ WHERE E IS ARSENIC OR ANTIMONY

ANDREW C. GINGELL and ANTONY J. REST*


Department of Inorganic Chemistry, The University, Southampton, SO9 5NH (Great 3ritain)

Received August 19th, 1975)

Summary

UV irradiation of $(\pi$ -C₅H₅)Fe(CO)₂CH₃ in the presence of As(C₆H₅)₃ or $b(C_6H_5)_3$ in acetonitrile at 20°C gives the title compounds.

Carbon monoxide insertion reactions of the type of eqn. 1 have been

eported for a large number of σ -bonded ligands (R), metals (represented by M to include ancillary ligands) and incoming nucleophiles (L) [1]. Some ransition metal systems react with a wide range of L, including phosphites, phosphines, arsines, stibines, organic sulphides, organic amines, iodide and CO, σ yield the corresponding acyls. Other systems, notably $(\pi - C_5 H_5)Mo(CO)_3 R$ [2] and $(\pi - C_5 H_5)Fe(CO)_2 R$ [3], display a marked selectively towards various with phosphorus ligands as the only generally successful type.

We demonstrated recently [4] that $A_{s}(C_{6}H_{5})_{3}$ could react with π -C₅H₅)Mo(CO)₃CH₃ under carefully controlled temperature conditions to five $(\pi$ -C₅H₅)Mo(CO)₂(COCH₃)As(C₆H₅)₃, contrary to what had been reported previously [2]. We report here the conditions under which As(C₆H₅)₃ and b)(C₆H₅)₃ react with $(\pi$ -C₅H₅)Fe(CO)₂CH₃ to give new acetyl complexes.

The thermal reaction between $(\pi - C_5H_5)Fe(CO)_2CH_3$ and excess As $(C_6H_5)_3$ n acetonitrile under N₂, analogous to the successful reaction of $(\pi - C_5H_5)Mo-CO)_3CH_3$ [4], was monitored by IR sampling at a range of temperatures

* Author to whom correspondence should be addressed.

C27

between 20°C and reflux point. No new IR bands were observed, indicating failure of the thermal route, but on irradiating the reaction mixture with UV/visible light the solution rapidly changed colour, from yellow to deep red. This solution showed the appearance of a single new IR band at $1917 \, \mathrm{cm}^{-1}$, which indicated the possible formation of monocarbonyl complex. The reaction on a preparative scale, $(\pi - C_5H_5)Fe(CO)_2CH_3$ (5 mmole) and As(C₆H₅)₃ (20 mmole) in acetonitrile (150 ml) stirred under N_2 at 20°C and irradiated with a 125 wat⁺ Hg lamp for 30 minutes through a quartz finger in the centre of the reaction vessel, gave a red-brown solid when the solution was taken to dryness. Repeated washing of the solid with cold methanol removed $As(C_6H_5)_3$ and unreacted $(\pi - C_5 H_5) Fe(CO)_2 CH_3$. Recrystallisation of the remaining solid from hexane/methanol gave red-brown crystals of $(\pi$ -C₅H₅)Fe(CO)(COCH₃)As- $(C_6H_5)_3$ (Found: C, 61.30; H, 4.87; N, 0.00. $C_{26}H_{23}AsFeO_2$ calcd.: C, 62.67; H, 4.65; N, 0.00 %) which melted at 127-128°C with an overall yield of 42%. The IR and NMR data (Table 1) are strikingly similar to the corresponding $P(C_6H_5)_3$ complex [3]. An analogous reaction with $Sb(C_6H_5)_3$ gave a dark brown solid which was identified by IR and NMR spectroscopy (Table 1) as $(\pi-C_5H_5)Fe(CO)(COCH_3)Sb(C_6H_5)_3$. Both new complexes decompose rapidly in many common solvents, e.g. CHCl₃, Et₂O, C₆H₆, and this hampered purification.

TABLE 1

IR (2200-1500cm⁻¹) AND NMR (7) DATA FOR (7-C₅H₄)Fe(CO)(COCH₃)L COMPLEXES

L ·		IRª	NMR ^b	
	ſ	1920 vs, terminal CO	7.80, acetyl protons	
P(C ₆ H ₅) ₃ C		1598 s, acetyl CO	5.72, π -C ₅ H ₅ protons	
	L.	-	2.45-2.75, phenyl protons	
As(C ₆ H ₅) ₃	C	1917 vs. terminal CO	8.04, acetyl protons	
	4	1586 m, acetyl CO	5.34, π -C ₅ H, protons	
	L		2.55-2.80, phenyl protons	
Sb(C ₆ H ₅) ₃	Ĉ	1916 vs. terminal CO	8.11, acetyl protons	
	1	1582 m, acetyl CO	5.28, π -C ₅ H ₅ protons	
	L		2.55-2.75, phenyl protons	

^a In CH₂Cl₂ solution unless stated otherwise. ^b In CS₂ solution with TMS as external standard and using a ¹⁹F external lock (Varian XL-100 NMR spectrometer). ^c IR data from ref. 3; in CHCl₃ solution.

The isolation of triphenylarsine- and triphenylstibine-acetyliron complexes suggests that other σ -bonded complexes, which had not previously undergone thermal CO insertion reactions with As, N and S ligands, might react successfully under UV/visible irradiation. Future work will investigate this possibility and also study the decarbonylation of the new complexes.

References

- 2 P.J. Craig and M. Green, J. Chem. Soc. (A), (1968) 1978.
- 3 J.P. Bibler and A. Wojcicki, Inorg. Chem., 5 (1966) 889.
- 4 A. Harris and A.J. Rest, J. Organometal. Chem. 78 (1974) C29.

¹ A. Wojcicki, Advan, Organometal. Chem., 11 (1973) 87.